COVERT SIMULTANEOUS POST-EDITING IN ONLINE ASSESSMENT OF STUDENTS’ SIGHT TRANSLATION

Authors

DOI:

https://doi.org/10.20535/2410-8286.295548

Keywords:

online interpreter training;, specialised sight translation;, online assessment;, simultaneous post-editing;, machine translation;, strategies for covert MT use

Abstract

This first attempt aims to determine the extent of students’ covert use of machine translation (MT) in the online assessment of their sight translation, the strategies of such use, and its signs. The study is based on the analysis of target texts (TT) of specialised online sight translation from Ukrainian into English by 13 BA and 10 MA students. The procedure involved the comparison of the students' TTs with their MT counterparts. Signs of covert MT were found in 46% of the BA and 30% of the MA students’ translations. The main method of this covert MT use is "simultaneous post-editing", i.e., the immediate oral post-editing of the MT text generated by the students on their screens and hidden from the assessor, while they deliver their supposedly original TTs. Simultaneous post-editing strategies range from replacing individual lexemes with their synonyms, adding and deleting elements, changing the syntactic functions of words or phrases, rearranging sentence fragments, transforming their structure, to applying several of these strategies simultaneously. Other methods of concealment include alternating MT systems in translating the same source text, as well as artificially slowing down the process of reading the TT from the screen, accompanied by pauses in the relevant text fragments to perform certain mental operations. In order to increase objectivity, the author recommends a delayed assessment of students' online interpreting recordings. The research perspective is to study the didactic potential of simultaneous post-editing as a procedure for developing general interpreting skills.

 

Downloads

Download data is not yet available.

Author Biography

Leonid Mykolayovych Chernovaty, V.N.Karazin Kharkiv National University

LEONID CHERNOVATY, Doctor of Sciences, Professor of Mykola Lukash Translation Studies Department at V. N. Karazin National University of Kharkiv (Ukraine), and Visiting Researcher at the Department of English and American Studies at Matej Bel University (Slovakia). Full member of Higher School Academy of Sciences of Ukraine.

Lectures in Methodology of Translator and Interpreter Teaching and Training, Translation Studies and Specialised Translation and Interpreting. The author of the books Methodology of Translator and Interpreter Teaching and Training (2013), Reference Dictionary of Ukrainian Names (English - Ukrainian, Ukrainian – English with pronunciation and etymology) (with Eugen Schochenmaier), Monee, Il. (USA): Mondonomo, 2023, 468 p. ISBN: ‎ 978-95-35045-50-2, LCCN: 2023-932009, 2023), as well as over 300 research publications and textbooks on teaching English and specialised translation and interpreting.

Co-editor of the Dictum Factum and the editor of the UTTU series at the Nova Knyha publishers involved in the development and publishing materials for teaching English and translator/interpreter training. President of the Ukrainian Translator Trainers’ Union (UTTU). Research Interests: Psycholinguistics of Translation and Interpreting, Methodology of Translator and Interpreter Teaching and Training, Translation Studies, Specialised Translation and Interpreting, Terminology and Translation, Translation Process.

 

 

References

  1. Alonso, E. & Calvo, E. (2015). Developing a Blueprint for a Technology-mediated Approach to Translation Studies. Meta, 60 (1), 135–157. https://doi.org/10.7202/1032403ar
    |
  2. Bihych, O. B. & Strilets, V. V. (2020). Potential for the use of ICT in teaching scientific and technical translation. Information Technologies and Learning Tools, 76(2), 86–95. https://doi.org/10.33407/itlt.v76i2.2812
  3. Boulanger, P.-P. & Gagnon, C. (2023). Le corpus journalistique dans l’enseignement de la traduction économique et financière. Traduction, Terminologie, Rédaction, 36(1), 107–135. https://doi.org/10.7202/1107568ar
  4. Compare text. (2023). [Online]. Available: http://countwordsfree.com
  5. Daems, J., Vandepitte, S., Hartsuiker, R. J. & Macken, L. (2017). Translation Methods and Experience: A Comparative Analysis of Human Translation and Post-editing with Students and Professional Translators. Meta, 62(2), 245–270 . https://doi.org/10.7202/1041023ar
    |
  6. Gaspari, F., Almaghout, H. & Doherty, S. (2015). A survey of machine translation competences: Insights for translation technology educators and practitioners. Perspectives, 23(3), 333-358. https://doi.org/10.1080/0907676X.2014.979842
    |
  7. Ihnatenko, V. D. (2020). Vykorystannia elektronnoho keisu dlia navchannia maibutnikh filolohiv anotatyvnoho i referatyvnoho vydam perekladu [The use of e-case for teaching future philologists gist and abstract types of translation]. Information Technologies and Learning Tools, 79(5), 199–212. https://doi.org/10.33407/itlt.v79i5.3059
  8. Jiménez-Crespo, M. A. (2020). The “technological turn” in translation studies. Translation Spaces, 9(2), 314-341. https://doi.org/10.1075/ts.19012.jim
    |
  9. Kenny, D. & Doherty, S. (2014). Statistical machine translation in the translation curriculum: overcoming obstacles and empowering translators. The Interpreter and Translator Trainer, 8(2), 276-294. https://doi.org/10.1080/1750399X.2014.936112
    |
  10. Lemish, N. Y., Aleksieieva, O. M., Denysova, S. P., Matvieieva S. A. & Zernetska, A. A. (2020). Linhvistychni korpusni tekhnolohii yak dydaktychnyi instrument u navchanni maibutnikh perekladachiv v universyteti [Linguistic corpora technology as a didactic tool in training future translators]. Information Technologies and Learning Tools, 79(5), 242–259. https://doi.org/10.33407/itlt.v79i5.3626
  11. Loock, R. (2018). Traduction automatique et usage linguistique : une analyse de traductions anglais-français réunies en corpus. Meta, 63(3), 786–806. https://doi.org/10.7202/1060173ar
    |
  12. Lu, X., Han, Ch. (2023). Automatic assessment of spoken-language interpreting based on machine-translation evaluation metrics. A multi-scenario exploratory study. Interpreting, 25(1), 109-143. https://doi.org/10.1075/intp.00076.lu
  13. Man, D., Mo, A., Chau, M. H., O’Toole, J. M. & Lee, Ch. (2020). Translation technology adoption: evidence from a postgraduate programme for student translators in China. Perspectives, 28(2), 253-270. https://doi.org/10.1080/0907676X.2019.1677730
    |
  14. Mellinger, Ch. D. (2017). Translators and machine translation: knowledge and skills gaps in translator pedagogy. The Interpreter and Translator Trainer, 11(4), 280-293. https://doi.org/10.1080/1750399X.2017.1359760
    |
  15. Mossop, B. (2019). Subjective Responses to Translation Memory Policy in the Workplace. Traduction, Terminologie, Rédaction, 32(1), 309–339. https://doi.org/10.7202/1068023ar
  16. O’Brien, Sh. & Rossetti, A. (2020). Neural machine translation and the evolution of the localisation sector. The Journal of Internationalization and Localization, 7(1-2), 95-121,. https://doi.org/10.1075/jial.20005.obr
  17. Poirier, É. A. & Roy, J.-H. (2023). L’outil Ultrad de La Presse Canadienne : la traduction automatique dans un contexte journalistique. Traduction, Terminologie, Rédaction, 36(1), 71–105. https://doi.org/10.7202/1107567ar
  18. Pym, A. (2013). Translation Skill-Sets in a Machine-Translation Age. Meta, 58(3), 487–503. https://doi.org/10.7202/1025047ar
  19. Pysanko, M. L. & Pysanko, I. V. (2022). Vykorystannia informatsiino-komunikatsiinykh tekhnolohii u profesiinii pidhotovtsi maibutnikh fakhivtsiv z usnoho perekladu [Information and communication technologies in professional interpreters training]. Information Technologies and Learning Tools, 88(2), 186–202. https://doi.org/10.33407/itlt.v88i2.4205
  20. Rodríguez de Céspedes, B. (2019). Translator Education at a Crossroads: the Impact of Automation. Lebende Sprachen, 64(1), 103-121. https://doi.org/10.1515/les-2019-0005
  21. Rodríguez Vázquez, S., Kaplan, A., Bouillon, P., Griebel, C. & Azari, R. (2022). La traduction automatique des textes faciles à lire et à comprendre (FALC) : une étude comparative. Meta, 67(1), 18–49. https://doi.org/10.7202/1092189ar
  22. Ruokonen, M. & Koskinen, K. (2017). Dancing with technology: translators’ narratives on the dance of human and machinic agency in translation work. The Translator, 23(3), 310-323. DOI:10.1080/13556509.2017.1301846
    |
  23. Schmidhofer, A. & Mair, N. (2019). La traducción automática en la formación de traductores. CLINA: Revista Interdisciplinaria de Traducción, Interpretación y Comunicación Intercultural, 4(2), 163-180. https://doi.org/10.14201/clina201842163180
  24. Teixeira, C., O’Brian, Sh. (2017). Investigating the cognitive ergonomic aspects of translation tools in a workplace setting. Translation Spaces, 6(1), 79-103. DOI: https://doi.org/10.1075/ts.6.1.05tei
  25. Yang, Y., Wang, X. & Yuan, Q. (2021). Measuring the usability of machine translation in the classroom context. Translation and Interpreting Studies, 16(1), 101–123. https://doi.org/10.1075/tis.18047.yan

Downloads

Published

2024-08-14

How to Cite

Chernovaty, L. M. (2024). COVERT SIMULTANEOUS POST-EDITING IN ONLINE ASSESSMENT OF STUDENTS’ SIGHT TRANSLATION . Advanced Education, 12(24), 12–27. https://doi.org/10.20535/2410-8286.295548

Issue

Section

ARTICLES