NEURAL NETWORK PATTERN FOR ENHANCING FUNCTIONALITY OF ELECTRONIC DICTIONARIES

Authors

DOI:

https://doi.org/10.20535/2410-8286.132940

Keywords:

dictionary, onomasiology, hypertextuality, computational lexicography, translation, semantics, phraseology

Abstract

The value of a dictionary is traditionally considered to be proportional to its physical volume, measured in the number of entries. However, the amount of useful data varies depending on existing hypertextual links across a dictionary. Therefore, its utility might also be calculated as proportional to the number of useful links among its structural parts which can interact in a similar way as neurons do via synapse links, provided that the number of links turns out to be exponentially greater than the number of entries. Today’s lexicographic practice, as well as an experiment held by the author with his own developed onomasiological electronic dictionary of phraseological synonyms “IdeoPhrase”, appears to demonstrate that the main criterion for establishing links automatically is the repetition of each kind of signs (stylistic labels, graphical word, metalinguistic comments). Automatically generated hypertextual links can be used for finding out semantic relations of different types among lexemes (synonymic, antonymic and others), semantic equivalence or similarity among lexemes in different languages (which is close to automatic translation), as well as compiling a new dictionary. The fact that generated relation established by а computer constitute new useful knowledge which has not been directly input by the compiler, qualifies this algorithm as artificial intelligence engine.

Downloads

Download data is not yet available.

References

  1. Aboitiz, F. (1996). Does Bigger Mean Better? Evolutionary Determinants of Brain Size and Structure. Brain, Behavior and Evolution, 47(5), 225-245. https://doi.org/10.1159/000113243
    |
  2. Baranov, O.S. (1995). Ideograficheskiy slovar russkogo yazyka [Ideographic Dictionary of Russian Language]. Moscow, Russian Federation: Izdatelstvo ETS..
  3. Casares, J. (1942). Diccionario ideológico de la lengua española. Barcelona, Spain: Ed. Gustavo Gili.
  4. DRAE (n.d.). Diccionario de la Real Academia Española. Retrieved May 30, 2018 from https://www.rae.es
  5. DIRAE (n.d.). Diccionario Inverso de la Real Academia Española. Retrieved May 30, 2018 from https://dirae.es/palabras/?q=mueble
  6. EuroVoc (n.d.), Multilingual Thesaurus of the European Union. Retrieved May 30, 2018 from: http://eurovoc.europa.eu/drupal/
  7. Fokin, S.B. (2015). Vybir deskryptoriv dlya onomasiolohichnoho slovnyka: pytannya metodologiyi [Descriptor selection for onomasiological dictionaries: methodological creteria]. In V.B. Bourbelo & M.M. Popovych (Eds.), Pyata Vseukrainska naukova konferentsiya romanistiv. Structurna-semantychni i kohnityvno-dyskursyvnia paradyhmy suchasnoho romanskoho movoznavstva (pp. 71-72). Odesa, Ukraine: KP OMD.
  8. Fokin, S.B. (2017). Optimisation de l'extraction automatique des équivalents des bases de données bilingues par un filtrage lié à la longueur des mots. In H. Kriuchkov & V. Bourbelo (Eds.), Actes du 1er Colloque international francophone en Ukraine 19-20 octobre 2017 “Langues, Sciences et Pratiques” (p. 44). Kyiv, Ukraine: Université Nationale Taras Chevtchenko de Kiev, Ambassade de France en Ukraine, Institut Français d’Ukraine, Agence Universitaire de la Francophonie.
  9. Gardner, M. (1958). Logic machines and diagrams. New-York-Toronto-London, USA-Canada-GB: McGRAW-HILLBOOK COMPANY,INC..
  10. IdeoPhrase (n.d.), Onomasiological Multilingual Dictionary of Phraseological Synonyms. Retrieved May 30, 2018 from http://postup.zzz.com.ua/IdeoPhrase.html#
  11. Long-Sheng, H.-J. C. (2009). Developing a Neural Network based Index for Sentiment Classification. In S.I. Ao, O. Castillo, F. Douglas, D.D. Feng, & J.A. Lee (Eds.), Proceedings of the International MultiConference of Engineers and Computer Scientist (pp. 744-749). Hong Kong: University of Hong Kong. Retrieved May 30, 2018 from: http://www.iaeng.org/publication/IMECS2009/IMECS2009_pp744-749.pdf
  12. Manning, Ch.D., Raghavan, P. & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge, Great Britain: Cambridge University Press. Retrieved May 30, 2018 from https://nlp.stanford.edu/IR-book/
  13. Pamies Bertrán, А., Iñesta Mena, E.M., Balmacz, M., & Kaloustova, O. (1998). Multilingual Electronic Phraseological Dictionary "AUTOFRAS". Tempus Language Toolbox (CD-version).
  14. Pamies, A, Balmacz, M., & Iñesta, E.M. (1998). Criterios para una fraseología onomasiológica automatizada. In J.D. Luque Duran & A. Pamies Bertrán (Eds.), Léxico y Fraseología (pp. 207-217). Granada, Spain: Método Ediciones.
  15. Schryver UGent, G.-M. & Joffe, D. (2004). On How Electronic Dictionaries are Really Used. In G.Williams & S.Vessier (Eds.), Proceedings of the 11th EURALEX International Congress (pp. 187-196). Vannes: Université de Bretagne Sud. Retrieved May 30, 2018 from: https://biblio.ugent.be/publication/299034/file/6778172
  16. Selegey, V. (2003). Elektronnye slovari i kompiuternaya leksikografiya [On electronic dictionaries and computational lexicography]. Retrieved May 30, 2018 from: https://studfiles.net/preview/1771482/page:28/
  17. Shepherd, M. & Waters, C. (1998). The evolution of cybergenres. In P. Apers et al. (Eds.), Proceedings of the 31st Hawaii Conference on System Science (pp. 97-103). Los Alamitos: IEEE Press. Retrieved May 30, 2018 from: https://www.cybermova.com/cgi-bin/olenuapro.pl
    |
  18. Taljard, É. & Schryver, G.-M. (2002). Semi-automatic Term Extraction for the African Languages, with Special Reference to Northern Sotho. Lexikos,12, 44-74. Retrieved May 30, 2018 from https://doi.org/10.5788/12-0-760
  19. Ukrainian Linguistic Resources (2013). English-Ukrainian Dictionary. Retrieved May 30, 2018 from: https://www.cybermova.com/cgi-bin/olenuapro.pl

Downloads

Published

2019-06-24

How to Cite

Fokin, S. (2019). NEURAL NETWORK PATTERN FOR ENHANCING FUNCTIONALITY OF ELECTRONIC DICTIONARIES. Advanced Education, 6(12), 150–158. https://doi.org/10.20535/2410-8286.132940

Issue

Section

ARTICLES